12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- import { factory } from '../../utils/factory.js';
- import { isCollection } from '../../utils/is.js';
- var name = 'std';
- var dependencies = ['typed', 'map', 'sqrt', 'variance'];
- export var createStd = /* #__PURE__ */factory(name, dependencies, _ref => {
- var {
- typed,
- map,
- sqrt,
- variance
- } = _ref;
- /**
- * Compute the standard deviation of a matrix or a list with values.
- * The standard deviations is defined as the square root of the variance:
- * `std(A) = sqrt(variance(A))`.
- * In case of a (multi dimensional) array or matrix, the standard deviation
- * over all elements will be calculated by default, unless an axis is specified
- * in which case the standard deviation will be computed along that axis.
- *
- * Additionally, it is possible to compute the standard deviation along the rows
- * or columns of a matrix by specifying the dimension as the second argument.
- *
- * Optionally, the type of normalization can be specified as the final
- * parameter. The parameter `normalization` can be one of the following values:
- *
- * - 'unbiased' (default) The sum of squared errors is divided by (n - 1)
- * - 'uncorrected' The sum of squared errors is divided by n
- * - 'biased' The sum of squared errors is divided by (n + 1)
- *
- *
- * Syntax:
- *
- * math.std(a, b, c, ...)
- * math.std(A)
- * math.std(A, normalization)
- * math.std(A, dimension)
- * math.std(A, dimension, normalization)
- *
- * Examples:
- *
- * math.std(2, 4, 6) // returns 2
- * math.std([2, 4, 6, 8]) // returns 2.581988897471611
- * math.std([2, 4, 6, 8], 'uncorrected') // returns 2.23606797749979
- * math.std([2, 4, 6, 8], 'biased') // returns 2
- *
- * math.std([[1, 2, 3], [4, 5, 6]]) // returns 1.8708286933869707
- * math.std([[1, 2, 3], [4, 6, 8]], 0) // returns [2.1213203435596424, 2.8284271247461903, 3.5355339059327378]
- * math.std([[1, 2, 3], [4, 6, 8]], 1) // returns [1, 2]
- * math.std([[1, 2, 3], [4, 6, 8]], 1, 'biased') // returns [0.7071067811865476, 1.4142135623730951]
- *
- * See also:
- *
- * mean, median, max, min, prod, sum, variance
- *
- * @param {Array | Matrix} array
- * A single matrix or or multiple scalar values
- * @param {string} [normalization='unbiased']
- * Determines how to normalize the variance.
- * Choose 'unbiased' (default), 'uncorrected', or 'biased'.
- * @param dimension {number | BigNumber}
- * Determines the axis to compute the standard deviation for a matrix
- * @return {*} The standard deviation
- */
- return typed(name, {
- // std([a, b, c, d, ...])
- 'Array | Matrix': _std,
- // std([a, b, c, d, ...], normalization)
- 'Array | Matrix, string': _std,
- // std([a, b, c, c, ...], dim)
- 'Array | Matrix, number | BigNumber': _std,
- // std([a, b, c, c, ...], dim, normalization)
- 'Array | Matrix, number | BigNumber, string': _std,
- // std(a, b, c, d, ...)
- '...': function _(args) {
- return _std(args);
- }
- });
- function _std(array, normalization) {
- if (array.length === 0) {
- throw new SyntaxError('Function std requires one or more parameters (0 provided)');
- }
- try {
- var v = variance.apply(null, arguments);
- if (isCollection(v)) {
- return map(v, sqrt);
- } else {
- return sqrt(v);
- }
- } catch (err) {
- if (err instanceof TypeError && err.message.indexOf(' variance') !== -1) {
- throw new TypeError(err.message.replace(' variance', ' std'));
- } else {
- throw err;
- }
- }
- }
- });
|