123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- "use strict";
- var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault");
- Object.defineProperty(exports, "__esModule", {
- value: true
- });
- exports.createPolynomialRoot = void 0;
- var _slicedToArray2 = _interopRequireDefault(require("@babel/runtime/helpers/slicedToArray"));
- var _toConsumableArray2 = _interopRequireDefault(require("@babel/runtime/helpers/toConsumableArray"));
- var _factory = require("../../utils/factory.js");
- var name = 'polynomialRoot';
- var dependencies = ['typed', 'isZero', 'equalScalar', 'add', 'subtract', 'multiply', 'divide', 'sqrt', 'unaryMinus', 'cbrt', 'typeOf', 'im', 're'];
- var createPolynomialRoot = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) {
- var typed = _ref.typed,
- isZero = _ref.isZero,
- equalScalar = _ref.equalScalar,
- add = _ref.add,
- subtract = _ref.subtract,
- multiply = _ref.multiply,
- divide = _ref.divide,
- sqrt = _ref.sqrt,
- unaryMinus = _ref.unaryMinus,
- cbrt = _ref.cbrt,
- typeOf = _ref.typeOf,
- im = _ref.im,
- re = _ref.re;
- /**
- * Finds the numerical values of the distinct roots of a polynomial with real or complex coefficients.
- * Currently operates only on linear, quadratic, and cubic polynomials using the standard
- * formulas for the roots.
- *
- * Syntax:
- *
- * polynomialRoot(constant, linearCoeff, quadraticCoeff, cubicCoeff)
- *
- * Examples:
- * // linear
- * math.polynomialRoot(6, 3) // [-2]
- * math.polynomialRoot(math.complex(6,3), 3) // [-2 - i]
- * math.polynomialRoot(math.complex(6,3), math.complex(2,1)) // [-3 + 0i]
- * // quadratic
- * math.polynomialRoot(2, -3, 1) // [2, 1]
- * math.polynomialRoot(8, 8, 2) // [-2]
- * math.polynomialRoot(-2, 0, 1) // [1.4142135623730951, -1.4142135623730951]
- * math.polynomialRoot(2, -2, 1) // [1 + i, 1 - i]
- * math.polynomialRoot(math.complex(1,3), math.complex(-3, -2), 1) // [2 + i, 1 + i]
- * // cubic
- * math.polynomialRoot(-6, 11, -6, 1) // [1, 3, 2]
- * math.polynomialRoot(-8, 0, 0, 1) // [-1 - 1.7320508075688774i, 2, -1 + 1.7320508075688774i]
- * math.polynomialRoot(0, 8, 8, 2) // [0, -2]
- * math.polynomialRoot(1, 1, 1, 1) // [-1 + 0i, 0 - i, 0 + i]
- *
- * See also:
- * cbrt, sqrt
- *
- * @param {... number | Complex} coeffs
- * The coefficients of the polynomial, starting with with the constant coefficent, followed
- * by the linear coefficient and subsequent coefficients of increasing powers.
- * @return {Array} The distinct roots of the polynomial
- */
- return typed(name, {
- 'number|Complex, ...number|Complex': function numberComplexNumberComplex(constant, restCoeffs) {
- var coeffs = [constant].concat((0, _toConsumableArray2["default"])(restCoeffs));
- while (coeffs.length > 0 && isZero(coeffs[coeffs.length - 1])) {
- coeffs.pop();
- }
- if (coeffs.length < 2) {
- throw new RangeError("Polynomial [".concat(constant, ", ").concat(restCoeffs, "] must have a non-zero non-constant coefficient"));
- }
- switch (coeffs.length) {
- case 2:
- // linear
- return [unaryMinus(divide(coeffs[0], coeffs[1]))];
- case 3:
- {
- // quadratic
- var _coeffs = (0, _slicedToArray2["default"])(coeffs, 3),
- c = _coeffs[0],
- b = _coeffs[1],
- a = _coeffs[2];
- var denom = multiply(2, a);
- var d1 = multiply(b, b);
- var d2 = multiply(4, a, c);
- if (equalScalar(d1, d2)) return [divide(unaryMinus(b), denom)];
- var discriminant = sqrt(subtract(d1, d2));
- return [divide(subtract(discriminant, b), denom), divide(subtract(unaryMinus(discriminant), b), denom)];
- }
- case 4:
- {
- // cubic, cf. https://en.wikipedia.org/wiki/Cubic_equation
- var _coeffs2 = (0, _slicedToArray2["default"])(coeffs, 4),
- d = _coeffs2[0],
- _c = _coeffs2[1],
- _b = _coeffs2[2],
- _a = _coeffs2[3];
- var _denom = unaryMinus(multiply(3, _a));
- var D0_1 = multiply(_b, _b);
- var D0_2 = multiply(3, _a, _c);
- var D1_1 = add(multiply(2, _b, _b, _b), multiply(27, _a, _a, d));
- var D1_2 = multiply(9, _a, _b, _c);
- if (equalScalar(D0_1, D0_2) && equalScalar(D1_1, D1_2)) {
- return [divide(_b, _denom)];
- }
- var Delta0 = subtract(D0_1, D0_2);
- var Delta1 = subtract(D1_1, D1_2);
- var discriminant1 = add(multiply(18, _a, _b, _c, d), multiply(_b, _b, _c, _c));
- var discriminant2 = add(multiply(4, _b, _b, _b, d), multiply(4, _a, _c, _c, _c), multiply(27, _a, _a, d, d));
- if (equalScalar(discriminant1, discriminant2)) {
- return [divide(subtract(multiply(4, _a, _b, _c), add(multiply(9, _a, _a, d), multiply(_b, _b, _b))), multiply(_a, Delta0)),
- // simple root
- divide(subtract(multiply(9, _a, d), multiply(_b, _c)), multiply(2, Delta0)) // double root
- ];
- }
- // OK, we have three distinct roots
- var Ccubed;
- if (equalScalar(D0_1, D0_2)) {
- Ccubed = Delta1;
- } else {
- Ccubed = divide(add(Delta1, sqrt(subtract(multiply(Delta1, Delta1), multiply(4, Delta0, Delta0, Delta0)))), 2);
- }
- var allRoots = true;
- var rawRoots = cbrt(Ccubed, allRoots).toArray().map(function (C) {
- return divide(add(_b, C, divide(Delta0, C)), _denom);
- });
- return rawRoots.map(function (r) {
- if (typeOf(r) === 'Complex' && equalScalar(re(r), re(r) + im(r))) {
- return re(r);
- }
- return r;
- });
- }
- default:
- throw new RangeError("only implemented for cubic or lower-order polynomials, not ".concat(coeffs));
- }
- }
- });
- });
- exports.createPolynomialRoot = createPolynomialRoot;
|