nthRoot.js 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192
  1. "use strict";
  2. Object.defineProperty(exports, "__esModule", {
  3. value: true
  4. });
  5. exports.createNthRootNumber = exports.createNthRoot = void 0;
  6. var _factory = require("../../utils/factory.js");
  7. var _matAlgo01xDSid = require("../../type/matrix/utils/matAlgo01xDSid.js");
  8. var _matAlgo02xDS = require("../../type/matrix/utils/matAlgo02xDS0.js");
  9. var _matAlgo06xS0S = require("../../type/matrix/utils/matAlgo06xS0S0.js");
  10. var _matAlgo11xS0s = require("../../type/matrix/utils/matAlgo11xS0s.js");
  11. var _matrixAlgorithmSuite = require("../../type/matrix/utils/matrixAlgorithmSuite.js");
  12. var _index = require("../../plain/number/index.js");
  13. var name = 'nthRoot';
  14. var dependencies = ['typed', 'matrix', 'equalScalar', 'BigNumber'];
  15. var createNthRoot = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) {
  16. var typed = _ref.typed,
  17. matrix = _ref.matrix,
  18. equalScalar = _ref.equalScalar,
  19. _BigNumber = _ref.BigNumber;
  20. var matAlgo01xDSid = (0, _matAlgo01xDSid.createMatAlgo01xDSid)({
  21. typed: typed
  22. });
  23. var matAlgo02xDS0 = (0, _matAlgo02xDS.createMatAlgo02xDS0)({
  24. typed: typed,
  25. equalScalar: equalScalar
  26. });
  27. var matAlgo06xS0S0 = (0, _matAlgo06xS0S.createMatAlgo06xS0S0)({
  28. typed: typed,
  29. equalScalar: equalScalar
  30. });
  31. var matAlgo11xS0s = (0, _matAlgo11xS0s.createMatAlgo11xS0s)({
  32. typed: typed,
  33. equalScalar: equalScalar
  34. });
  35. var matrixAlgorithmSuite = (0, _matrixAlgorithmSuite.createMatrixAlgorithmSuite)({
  36. typed: typed,
  37. matrix: matrix
  38. });
  39. /**
  40. * Calculate the nth root of a value.
  41. * The principal nth root of a positive real number A, is the positive real
  42. * solution of the equation
  43. *
  44. * x^root = A
  45. *
  46. * For matrices, the function is evaluated element wise.
  47. *
  48. * Syntax:
  49. *
  50. * math.nthRoot(a)
  51. * math.nthRoot(a, root)
  52. *
  53. * Examples:
  54. *
  55. * math.nthRoot(9, 2) // returns 3 (since 3^2 == 9)
  56. * math.sqrt(9) // returns 3 (since 3^2 == 9)
  57. * math.nthRoot(64, 3) // returns 4 (since 4^3 == 64)
  58. *
  59. * See also:
  60. *
  61. * sqrt, pow
  62. *
  63. * @param {number | BigNumber | Array | Matrix | Complex} a
  64. * Value for which to calculate the nth root
  65. * @param {number | BigNumber} [root=2] The root.
  66. * @return {number | Complex | Array | Matrix} Returns the nth root of `a`
  67. */
  68. function complexErr() {
  69. throw new Error('Complex number not supported in function nthRoot. Use nthRoots instead.');
  70. }
  71. return typed(name, {
  72. number: _index.nthRootNumber,
  73. 'number, number': _index.nthRootNumber,
  74. BigNumber: function BigNumber(x) {
  75. return _bigNthRoot(x, new _BigNumber(2));
  76. },
  77. 'BigNumber, BigNumber': _bigNthRoot,
  78. Complex: complexErr,
  79. 'Complex, number': complexErr,
  80. Array: typed.referTo('DenseMatrix,number', function (selfDn) {
  81. return function (x) {
  82. return selfDn(matrix(x), 2).valueOf();
  83. };
  84. }),
  85. DenseMatrix: typed.referTo('DenseMatrix,number', function (selfDn) {
  86. return function (x) {
  87. return selfDn(x, 2);
  88. };
  89. }),
  90. SparseMatrix: typed.referTo('SparseMatrix,number', function (selfSn) {
  91. return function (x) {
  92. return selfSn(x, 2);
  93. };
  94. }),
  95. 'SparseMatrix, SparseMatrix': typed.referToSelf(function (self) {
  96. return function (x, y) {
  97. // density must be one (no zeros in matrix)
  98. if (y.density() === 1) {
  99. // sparse + sparse
  100. return matAlgo06xS0S0(x, y, self);
  101. } else {
  102. // throw exception
  103. throw new Error('Root must be non-zero');
  104. }
  105. };
  106. }),
  107. 'DenseMatrix, SparseMatrix': typed.referToSelf(function (self) {
  108. return function (x, y) {
  109. // density must be one (no zeros in matrix)
  110. if (y.density() === 1) {
  111. // dense + sparse
  112. return matAlgo01xDSid(x, y, self, false);
  113. } else {
  114. // throw exception
  115. throw new Error('Root must be non-zero');
  116. }
  117. };
  118. }),
  119. 'Array, SparseMatrix': typed.referTo('DenseMatrix,SparseMatrix', function (selfDS) {
  120. return function (x, y) {
  121. return selfDS(matrix(x), y);
  122. };
  123. }),
  124. 'number | BigNumber, SparseMatrix': typed.referToSelf(function (self) {
  125. return function (x, y) {
  126. // density must be one (no zeros in matrix)
  127. if (y.density() === 1) {
  128. // sparse - scalar
  129. return matAlgo11xS0s(y, x, self, true);
  130. } else {
  131. // throw exception
  132. throw new Error('Root must be non-zero');
  133. }
  134. };
  135. })
  136. }, matrixAlgorithmSuite({
  137. scalar: 'number | BigNumber',
  138. SD: matAlgo02xDS0,
  139. Ss: matAlgo11xS0s,
  140. sS: false
  141. }));
  142. /**
  143. * Calculate the nth root of a for BigNumbers, solve x^root == a
  144. * https://rosettacode.org/wiki/Nth_root#JavaScript
  145. * @param {BigNumber} a
  146. * @param {BigNumber} root
  147. * @private
  148. */
  149. function _bigNthRoot(a, root) {
  150. var precision = _BigNumber.precision;
  151. var Big = _BigNumber.clone({
  152. precision: precision + 2
  153. });
  154. var zero = new _BigNumber(0);
  155. var one = new Big(1);
  156. var inv = root.isNegative();
  157. if (inv) {
  158. root = root.neg();
  159. }
  160. if (root.isZero()) {
  161. throw new Error('Root must be non-zero');
  162. }
  163. if (a.isNegative() && !root.abs().mod(2).equals(1)) {
  164. throw new Error('Root must be odd when a is negative.');
  165. }
  166. // edge cases zero and infinity
  167. if (a.isZero()) {
  168. return inv ? new Big(Infinity) : 0;
  169. }
  170. if (!a.isFinite()) {
  171. return inv ? zero : a;
  172. }
  173. var x = a.abs().pow(one.div(root));
  174. // If a < 0, we require that root is an odd integer,
  175. // so (-1) ^ (1/root) = -1
  176. x = a.isNeg() ? x.neg() : x;
  177. return new _BigNumber((inv ? one.div(x) : x).toPrecision(precision));
  178. }
  179. });
  180. exports.createNthRoot = createNthRoot;
  181. var createNthRootNumber = /* #__PURE__ */(0, _factory.factory)(name, ['typed'], function (_ref2) {
  182. var typed = _ref2.typed;
  183. return typed(name, {
  184. number: _index.nthRootNumber,
  185. 'number, number': _index.nthRootNumber
  186. });
  187. });
  188. exports.createNthRootNumber = createNthRootNumber;