123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192 |
- "use strict";
- Object.defineProperty(exports, "__esModule", {
- value: true
- });
- exports.createNthRootNumber = exports.createNthRoot = void 0;
- var _factory = require("../../utils/factory.js");
- var _matAlgo01xDSid = require("../../type/matrix/utils/matAlgo01xDSid.js");
- var _matAlgo02xDS = require("../../type/matrix/utils/matAlgo02xDS0.js");
- var _matAlgo06xS0S = require("../../type/matrix/utils/matAlgo06xS0S0.js");
- var _matAlgo11xS0s = require("../../type/matrix/utils/matAlgo11xS0s.js");
- var _matrixAlgorithmSuite = require("../../type/matrix/utils/matrixAlgorithmSuite.js");
- var _index = require("../../plain/number/index.js");
- var name = 'nthRoot';
- var dependencies = ['typed', 'matrix', 'equalScalar', 'BigNumber'];
- var createNthRoot = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) {
- var typed = _ref.typed,
- matrix = _ref.matrix,
- equalScalar = _ref.equalScalar,
- _BigNumber = _ref.BigNumber;
- var matAlgo01xDSid = (0, _matAlgo01xDSid.createMatAlgo01xDSid)({
- typed: typed
- });
- var matAlgo02xDS0 = (0, _matAlgo02xDS.createMatAlgo02xDS0)({
- typed: typed,
- equalScalar: equalScalar
- });
- var matAlgo06xS0S0 = (0, _matAlgo06xS0S.createMatAlgo06xS0S0)({
- typed: typed,
- equalScalar: equalScalar
- });
- var matAlgo11xS0s = (0, _matAlgo11xS0s.createMatAlgo11xS0s)({
- typed: typed,
- equalScalar: equalScalar
- });
- var matrixAlgorithmSuite = (0, _matrixAlgorithmSuite.createMatrixAlgorithmSuite)({
- typed: typed,
- matrix: matrix
- });
- /**
- * Calculate the nth root of a value.
- * The principal nth root of a positive real number A, is the positive real
- * solution of the equation
- *
- * x^root = A
- *
- * For matrices, the function is evaluated element wise.
- *
- * Syntax:
- *
- * math.nthRoot(a)
- * math.nthRoot(a, root)
- *
- * Examples:
- *
- * math.nthRoot(9, 2) // returns 3 (since 3^2 == 9)
- * math.sqrt(9) // returns 3 (since 3^2 == 9)
- * math.nthRoot(64, 3) // returns 4 (since 4^3 == 64)
- *
- * See also:
- *
- * sqrt, pow
- *
- * @param {number | BigNumber | Array | Matrix | Complex} a
- * Value for which to calculate the nth root
- * @param {number | BigNumber} [root=2] The root.
- * @return {number | Complex | Array | Matrix} Returns the nth root of `a`
- */
- function complexErr() {
- throw new Error('Complex number not supported in function nthRoot. Use nthRoots instead.');
- }
- return typed(name, {
- number: _index.nthRootNumber,
- 'number, number': _index.nthRootNumber,
- BigNumber: function BigNumber(x) {
- return _bigNthRoot(x, new _BigNumber(2));
- },
- 'BigNumber, BigNumber': _bigNthRoot,
- Complex: complexErr,
- 'Complex, number': complexErr,
- Array: typed.referTo('DenseMatrix,number', function (selfDn) {
- return function (x) {
- return selfDn(matrix(x), 2).valueOf();
- };
- }),
- DenseMatrix: typed.referTo('DenseMatrix,number', function (selfDn) {
- return function (x) {
- return selfDn(x, 2);
- };
- }),
- SparseMatrix: typed.referTo('SparseMatrix,number', function (selfSn) {
- return function (x) {
- return selfSn(x, 2);
- };
- }),
- 'SparseMatrix, SparseMatrix': typed.referToSelf(function (self) {
- return function (x, y) {
- // density must be one (no zeros in matrix)
- if (y.density() === 1) {
- // sparse + sparse
- return matAlgo06xS0S0(x, y, self);
- } else {
- // throw exception
- throw new Error('Root must be non-zero');
- }
- };
- }),
- 'DenseMatrix, SparseMatrix': typed.referToSelf(function (self) {
- return function (x, y) {
- // density must be one (no zeros in matrix)
- if (y.density() === 1) {
- // dense + sparse
- return matAlgo01xDSid(x, y, self, false);
- } else {
- // throw exception
- throw new Error('Root must be non-zero');
- }
- };
- }),
- 'Array, SparseMatrix': typed.referTo('DenseMatrix,SparseMatrix', function (selfDS) {
- return function (x, y) {
- return selfDS(matrix(x), y);
- };
- }),
- 'number | BigNumber, SparseMatrix': typed.referToSelf(function (self) {
- return function (x, y) {
- // density must be one (no zeros in matrix)
- if (y.density() === 1) {
- // sparse - scalar
- return matAlgo11xS0s(y, x, self, true);
- } else {
- // throw exception
- throw new Error('Root must be non-zero');
- }
- };
- })
- }, matrixAlgorithmSuite({
- scalar: 'number | BigNumber',
- SD: matAlgo02xDS0,
- Ss: matAlgo11xS0s,
- sS: false
- }));
- /**
- * Calculate the nth root of a for BigNumbers, solve x^root == a
- * https://rosettacode.org/wiki/Nth_root#JavaScript
- * @param {BigNumber} a
- * @param {BigNumber} root
- * @private
- */
- function _bigNthRoot(a, root) {
- var precision = _BigNumber.precision;
- var Big = _BigNumber.clone({
- precision: precision + 2
- });
- var zero = new _BigNumber(0);
- var one = new Big(1);
- var inv = root.isNegative();
- if (inv) {
- root = root.neg();
- }
- if (root.isZero()) {
- throw new Error('Root must be non-zero');
- }
- if (a.isNegative() && !root.abs().mod(2).equals(1)) {
- throw new Error('Root must be odd when a is negative.');
- }
- // edge cases zero and infinity
- if (a.isZero()) {
- return inv ? new Big(Infinity) : 0;
- }
- if (!a.isFinite()) {
- return inv ? zero : a;
- }
- var x = a.abs().pow(one.div(root));
- // If a < 0, we require that root is an odd integer,
- // so (-1) ^ (1/root) = -1
- x = a.isNeg() ? x.neg() : x;
- return new _BigNumber((inv ? one.div(x) : x).toPrecision(precision));
- }
- });
- exports.createNthRoot = createNthRoot;
- var createNthRootNumber = /* #__PURE__ */(0, _factory.factory)(name, ['typed'], function (_ref2) {
- var typed = _ref2.typed;
- return typed(name, {
- number: _index.nthRootNumber,
- 'number, number': _index.nthRootNumber
- });
- });
- exports.createNthRootNumber = createNthRootNumber;
|