qr.js 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222
  1. import _extends from "@babel/runtime/helpers/extends";
  2. import { factory } from '../../../utils/factory.js';
  3. var name = 'qr';
  4. var dependencies = ['typed', 'matrix', 'zeros', 'identity', 'isZero', 'equal', 'sign', 'sqrt', 'conj', 'unaryMinus', 'addScalar', 'divideScalar', 'multiplyScalar', 'subtract', 'complex'];
  5. export var createQr = /* #__PURE__ */factory(name, dependencies, _ref => {
  6. var {
  7. typed,
  8. matrix,
  9. zeros,
  10. identity,
  11. isZero,
  12. equal,
  13. sign,
  14. sqrt,
  15. conj,
  16. unaryMinus,
  17. addScalar,
  18. divideScalar,
  19. multiplyScalar,
  20. subtract,
  21. complex
  22. } = _ref;
  23. /**
  24. * Calculate the Matrix QR decomposition. Matrix `A` is decomposed in
  25. * two matrices (`Q`, `R`) where `Q` is an
  26. * orthogonal matrix and `R` is an upper triangular matrix.
  27. *
  28. * Syntax:
  29. *
  30. * math.qr(A)
  31. *
  32. * Example:
  33. *
  34. * const m = [
  35. * [1, -1, 4],
  36. * [1, 4, -2],
  37. * [1, 4, 2],
  38. * [1, -1, 0]
  39. * ]
  40. * const result = math.qr(m)
  41. * // r = {
  42. * // Q: [
  43. * // [0.5, -0.5, 0.5],
  44. * // [0.5, 0.5, -0.5],
  45. * // [0.5, 0.5, 0.5],
  46. * // [0.5, -0.5, -0.5],
  47. * // ],
  48. * // R: [
  49. * // [2, 3, 2],
  50. * // [0, 5, -2],
  51. * // [0, 0, 4],
  52. * // [0, 0, 0]
  53. * // ]
  54. * // }
  55. *
  56. * See also:
  57. *
  58. * lup, lusolve
  59. *
  60. * @param {Matrix | Array} A A two dimensional matrix or array
  61. * for which to get the QR decomposition.
  62. *
  63. * @return {{Q: Array | Matrix, R: Array | Matrix}} Q: the orthogonal
  64. * matrix and R: the upper triangular matrix
  65. */
  66. return _extends(typed(name, {
  67. DenseMatrix: function DenseMatrix(m) {
  68. return _denseQR(m);
  69. },
  70. SparseMatrix: function SparseMatrix(m) {
  71. return _sparseQR(m);
  72. },
  73. Array: function Array(a) {
  74. // create dense matrix from array
  75. var m = matrix(a);
  76. // lup, use matrix implementation
  77. var r = _denseQR(m);
  78. // result
  79. return {
  80. Q: r.Q.valueOf(),
  81. R: r.R.valueOf()
  82. };
  83. }
  84. }), {
  85. _denseQRimpl
  86. });
  87. function _denseQRimpl(m) {
  88. // rows & columns (m x n)
  89. var rows = m._size[0]; // m
  90. var cols = m._size[1]; // n
  91. var Q = identity([rows], 'dense');
  92. var Qdata = Q._data;
  93. var R = m.clone();
  94. var Rdata = R._data;
  95. // vars
  96. var i, j, k;
  97. var w = zeros([rows], '');
  98. for (k = 0; k < Math.min(cols, rows); ++k) {
  99. /*
  100. * **k-th Household matrix**
  101. *
  102. * The matrix I - 2*v*transpose(v)
  103. * x = first column of A
  104. * x1 = first element of x
  105. * alpha = x1 / |x1| * |x|
  106. * e1 = tranpose([1, 0, 0, ...])
  107. * u = x - alpha * e1
  108. * v = u / |u|
  109. *
  110. * Household matrix = I - 2 * v * tranpose(v)
  111. *
  112. * * Initially Q = I and R = A.
  113. * * Household matrix is a reflection in a plane normal to v which
  114. * will zero out all but the top right element in R.
  115. * * Appplying reflection to both Q and R will not change product.
  116. * * Repeat this process on the (1,1) minor to get R as an upper
  117. * triangular matrix.
  118. * * Reflections leave the magnitude of the columns of Q unchanged
  119. * so Q remains othoganal.
  120. *
  121. */
  122. var pivot = Rdata[k][k];
  123. var sgn = unaryMinus(equal(pivot, 0) ? 1 : sign(pivot));
  124. var conjSgn = conj(sgn);
  125. var alphaSquared = 0;
  126. for (i = k; i < rows; i++) {
  127. alphaSquared = addScalar(alphaSquared, multiplyScalar(Rdata[i][k], conj(Rdata[i][k])));
  128. }
  129. var alpha = multiplyScalar(sgn, sqrt(alphaSquared));
  130. if (!isZero(alpha)) {
  131. // first element in vector u
  132. var u1 = subtract(pivot, alpha);
  133. // w = v * u1 / |u| (only elements k to (rows-1) are used)
  134. w[k] = 1;
  135. for (i = k + 1; i < rows; i++) {
  136. w[i] = divideScalar(Rdata[i][k], u1);
  137. }
  138. // tau = - conj(u1 / alpha)
  139. var tau = unaryMinus(conj(divideScalar(u1, alpha)));
  140. var s = void 0;
  141. /*
  142. * tau and w have been choosen so that
  143. *
  144. * 2 * v * tranpose(v) = tau * w * tranpose(w)
  145. */
  146. /*
  147. * -- calculate R = R - tau * w * tranpose(w) * R --
  148. * Only do calculation with rows k to (rows-1)
  149. * Additionally columns 0 to (k-1) will not be changed by this
  150. * multiplication so do not bother recalculating them
  151. */
  152. for (j = k; j < cols; j++) {
  153. s = 0.0;
  154. // calculate jth element of [tranpose(w) * R]
  155. for (i = k; i < rows; i++) {
  156. s = addScalar(s, multiplyScalar(conj(w[i]), Rdata[i][j]));
  157. }
  158. // calculate the jth element of [tau * transpose(w) * R]
  159. s = multiplyScalar(s, tau);
  160. for (i = k; i < rows; i++) {
  161. Rdata[i][j] = multiplyScalar(subtract(Rdata[i][j], multiplyScalar(w[i], s)), conjSgn);
  162. }
  163. }
  164. /*
  165. * -- calculate Q = Q - tau * Q * w * transpose(w) --
  166. * Q is a square matrix (rows x rows)
  167. * Only do calculation with columns k to (rows-1)
  168. * Additionally rows 0 to (k-1) will not be changed by this
  169. * multiplication so do not bother recalculating them
  170. */
  171. for (i = 0; i < rows; i++) {
  172. s = 0.0;
  173. // calculate ith element of [Q * w]
  174. for (j = k; j < rows; j++) {
  175. s = addScalar(s, multiplyScalar(Qdata[i][j], w[j]));
  176. }
  177. // calculate the ith element of [tau * Q * w]
  178. s = multiplyScalar(s, tau);
  179. for (j = k; j < rows; ++j) {
  180. Qdata[i][j] = divideScalar(subtract(Qdata[i][j], multiplyScalar(s, conj(w[j]))), conjSgn);
  181. }
  182. }
  183. }
  184. }
  185. // return matrices
  186. return {
  187. Q,
  188. R,
  189. toString: function toString() {
  190. return 'Q: ' + this.Q.toString() + '\nR: ' + this.R.toString();
  191. }
  192. };
  193. }
  194. function _denseQR(m) {
  195. var ret = _denseQRimpl(m);
  196. var Rdata = ret.R._data;
  197. if (m._data.length > 0) {
  198. var zero = Rdata[0][0].type === 'Complex' ? complex(0) : 0;
  199. for (var i = 0; i < Rdata.length; ++i) {
  200. for (var j = 0; j < i && j < (Rdata[0] || []).length; ++j) {
  201. Rdata[i][j] = zero;
  202. }
  203. }
  204. }
  205. return ret;
  206. }
  207. function _sparseQR(m) {
  208. throw new Error('qr not implemented for sparse matrices yet');
  209. }
  210. });