123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101 |
- import { isInteger } from '../../../utils/number.js';
- import { factory } from '../../../utils/factory.js';
- import { createCsSqr } from '../sparse/csSqr.js';
- import { createCsLu } from '../sparse/csLu.js';
- var name = 'slu';
- var dependencies = ['typed', 'abs', 'add', 'multiply', 'transpose', 'divideScalar', 'subtract', 'larger', 'largerEq', 'SparseMatrix'];
- export var createSlu = /* #__PURE__ */factory(name, dependencies, _ref => {
- var {
- typed,
- abs,
- add,
- multiply,
- transpose,
- divideScalar,
- subtract,
- larger,
- largerEq,
- SparseMatrix
- } = _ref;
- var csSqr = createCsSqr({
- add,
- multiply,
- transpose
- });
- var csLu = createCsLu({
- abs,
- divideScalar,
- multiply,
- subtract,
- larger,
- largerEq,
- SparseMatrix
- });
- /**
- * Calculate the Sparse Matrix LU decomposition with full pivoting. Sparse Matrix `A` is decomposed in two matrices (`L`, `U`) and two permutation vectors (`pinv`, `q`) where
- *
- * `P * A * Q = L * U`
- *
- * Syntax:
- *
- * math.slu(A, order, threshold)
- *
- * Examples:
- *
- * const A = math.sparse([[4,3], [6, 3]])
- * math.slu(A, 1, 0.001)
- * // returns:
- * // {
- * // L: [[1, 0], [1.5, 1]]
- * // U: [[4, 3], [0, -1.5]]
- * // p: [0, 1]
- * // q: [0, 1]
- * // }
- *
- * See also:
- *
- * lup, lsolve, usolve, lusolve
- *
- * @param {SparseMatrix} A A two dimensional sparse matrix for which to get the LU decomposition.
- * @param {Number} order The Symbolic Ordering and Analysis order:
- * 0 - Natural ordering, no permutation vector q is returned
- * 1 - Matrix must be square, symbolic ordering and analisis is performed on M = A + A'
- * 2 - Symbolic ordering and analisis is performed on M = A' * A. Dense columns from A' are dropped, A recreated from A'.
- * This is appropriatefor LU factorization of unsymmetric matrices.
- * 3 - Symbolic ordering and analisis is performed on M = A' * A. This is best used for LU factorization is matrix M has no dense rows.
- * A dense row is a row with more than 10*sqr(columns) entries.
- * @param {Number} threshold Partial pivoting threshold (1 for partial pivoting)
- *
- * @return {Object} The lower triangular matrix, the upper triangular matrix and the permutation vectors.
- */
- return typed(name, {
- 'SparseMatrix, number, number': function SparseMatrixNumberNumber(a, order, threshold) {
- // verify order
- if (!isInteger(order) || order < 0 || order > 3) {
- throw new Error('Symbolic Ordering and Analysis order must be an integer number in the interval [0, 3]');
- }
- // verify threshold
- if (threshold < 0 || threshold > 1) {
- throw new Error('Partial pivoting threshold must be a number from 0 to 1');
- }
- // perform symbolic ordering and analysis
- var s = csSqr(order, a, false);
- // perform lu decomposition
- var f = csLu(a, s, threshold);
- // return decomposition
- return {
- L: f.L,
- U: f.U,
- p: f.pinv,
- q: s.q,
- toString: function toString() {
- return 'L: ' + this.L.toString() + '\nU: ' + this.U.toString() + '\np: ' + this.p.toString() + (this.q ? '\nq: ' + this.q.toString() : '') + '\n';
- }
- };
- }
- });
- });
|