123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459 |
- import { isFraction, isMatrix, isNode, isArrayNode, isConstantNode, isIndexNode, isObjectNode, isOperatorNode } from '../../utils/is.js';
- import { factory } from '../../utils/factory.js';
- import { createUtil } from './simplify/util.js';
- import { noBignumber, noFraction } from '../../utils/noop.js';
- var name = 'simplifyConstant';
- var dependencies = ['typed', 'parse', 'config', 'mathWithTransform', 'matrix', '?fraction', '?bignumber', 'AccessorNode', 'ArrayNode', 'ConstantNode', 'FunctionNode', 'IndexNode', 'ObjectNode', 'OperatorNode', 'SymbolNode'];
- export var createSimplifyConstant = /* #__PURE__ */factory(name, dependencies, _ref => {
- var {
- typed,
- parse,
- config,
- mathWithTransform,
- matrix,
- fraction,
- bignumber,
- AccessorNode,
- ArrayNode,
- ConstantNode,
- FunctionNode,
- IndexNode,
- ObjectNode,
- OperatorNode,
- SymbolNode
- } = _ref;
- var {
- isCommutative,
- isAssociative,
- allChildren,
- createMakeNodeFunction
- } = createUtil({
- FunctionNode,
- OperatorNode,
- SymbolNode
- });
- /**
- * simplifyConstant() takes a mathjs expression (either a Node representing
- * a parse tree or a string which it parses to produce a node), and replaces
- * any subexpression of it consisting entirely of constants with the computed
- * value of that subexpression.
- *
- * Syntax:
- *
- * simplifyConstant(expr)
- * simplifyConstant(expr, options)
- *
- * Examples:
- *
- * math.simplifyConstant('x + 4*3/6') // Node "x + 2"
- * math.simplifyConstant('z cos(0)') // Node "z 1"
- * math.simplifyConstant('(5.2 + 1.08)t', {exactFractions: false}) // Node "6.28 t"
- *
- * See also:
- *
- * simplify, simplifyCore, resolve, derivative
- *
- * @param {Node | string} node
- * The expression to be simplified
- * @param {Object} options
- * Simplification options, as per simplify()
- * @return {Node} Returns expression with constant subexpressions evaluated
- */
- var simplifyConstant = typed('simplifyConstant', {
- Node: node => _ensureNode(foldFraction(node, {})),
- 'Node, Object': function NodeObject(expr, options) {
- return _ensureNode(foldFraction(expr, options));
- }
- });
- function _removeFractions(thing) {
- if (isFraction(thing)) {
- return thing.valueOf();
- }
- if (thing instanceof Array) {
- return thing.map(_removeFractions);
- }
- if (isMatrix(thing)) {
- return matrix(_removeFractions(thing.valueOf()));
- }
- return thing;
- }
- function _eval(fnname, args, options) {
- try {
- return mathWithTransform[fnname].apply(null, args);
- } catch (ignore) {
- // sometimes the implicit type conversion causes the evaluation to fail, so we'll try again after removing Fractions
- args = args.map(_removeFractions);
- return _toNumber(mathWithTransform[fnname].apply(null, args), options);
- }
- }
- var _toNode = typed({
- Fraction: _fractionToNode,
- number: function number(n) {
- if (n < 0) {
- return unaryMinusNode(new ConstantNode(-n));
- }
- return new ConstantNode(n);
- },
- BigNumber: function BigNumber(n) {
- if (n < 0) {
- return unaryMinusNode(new ConstantNode(-n));
- }
- return new ConstantNode(n); // old parameters: (n.toString(), 'number')
- },
- Complex: function Complex(s) {
- throw new Error('Cannot convert Complex number to Node');
- },
- string: function string(s) {
- return new ConstantNode(s);
- },
- Matrix: function Matrix(m) {
- return new ArrayNode(m.valueOf().map(e => _toNode(e)));
- }
- });
- function _ensureNode(thing) {
- if (isNode(thing)) {
- return thing;
- }
- return _toNode(thing);
- }
- // convert a number to a fraction only if it can be expressed exactly,
- // and when both numerator and denominator are small enough
- function _exactFraction(n, options) {
- var exactFractions = options && options.exactFractions !== false;
- if (exactFractions && isFinite(n) && fraction) {
- var f = fraction(n);
- var fractionsLimit = options && typeof options.fractionsLimit === 'number' ? options.fractionsLimit : Infinity; // no limit by default
- if (f.valueOf() === n && f.n < fractionsLimit && f.d < fractionsLimit) {
- return f;
- }
- }
- return n;
- }
- // Convert numbers to a preferred number type in preference order: Fraction, number, Complex
- // BigNumbers are left alone
- var _toNumber = typed({
- 'string, Object': function stringObject(s, options) {
- if (config.number === 'BigNumber') {
- if (bignumber === undefined) {
- noBignumber();
- }
- return bignumber(s);
- } else if (config.number === 'Fraction') {
- if (fraction === undefined) {
- noFraction();
- }
- return fraction(s);
- } else {
- var n = parseFloat(s);
- return _exactFraction(n, options);
- }
- },
- 'Fraction, Object': function FractionObject(s, options) {
- return s;
- },
- // we don't need options here
- 'BigNumber, Object': function BigNumberObject(s, options) {
- return s;
- },
- // we don't need options here
- 'number, Object': function numberObject(s, options) {
- return _exactFraction(s, options);
- },
- 'Complex, Object': function ComplexObject(s, options) {
- if (s.im !== 0) {
- return s;
- }
- return _exactFraction(s.re, options);
- },
- 'Matrix, Object': function MatrixObject(s, options) {
- return matrix(_exactFraction(s.valueOf()));
- },
- 'Array, Object': function ArrayObject(s, options) {
- return s.map(_exactFraction);
- }
- });
- function unaryMinusNode(n) {
- return new OperatorNode('-', 'unaryMinus', [n]);
- }
- function _fractionToNode(f) {
- var n;
- var vn = f.s * f.n;
- if (vn < 0) {
- n = new OperatorNode('-', 'unaryMinus', [new ConstantNode(-vn)]);
- } else {
- n = new ConstantNode(vn);
- }
- if (f.d === 1) {
- return n;
- }
- return new OperatorNode('/', 'divide', [n, new ConstantNode(f.d)]);
- }
- /* Handles constant indexing of ArrayNodes, matrices, and ObjectNodes */
- function _foldAccessor(obj, index, options) {
- if (!isIndexNode(index)) {
- // don't know what to do with that...
- return new AccessorNode(_ensureNode(obj), _ensureNode(index));
- }
- if (isArrayNode(obj) || isMatrix(obj)) {
- var remainingDims = Array.from(index.dimensions);
- /* We will resolve constant indices one at a time, looking
- * just in the first or second dimensions because (a) arrays
- * of more than two dimensions are likely rare, and (b) pulling
- * out the third or higher dimension would be pretty intricate.
- * The price is that we miss simplifying [..3d array][x,y,1]
- */
- while (remainingDims.length > 0) {
- if (isConstantNode(remainingDims[0]) && typeof remainingDims[0].value !== 'string') {
- var first = _toNumber(remainingDims.shift().value, options);
- if (isArrayNode(obj)) {
- obj = obj.items[first - 1];
- } else {
- // matrix
- obj = obj.valueOf()[first - 1];
- if (obj instanceof Array) {
- obj = matrix(obj);
- }
- }
- } else if (remainingDims.length > 1 && isConstantNode(remainingDims[1]) && typeof remainingDims[1].value !== 'string') {
- var second = _toNumber(remainingDims[1].value, options);
- var tryItems = [];
- var fromItems = isArrayNode(obj) ? obj.items : obj.valueOf();
- for (var item of fromItems) {
- if (isArrayNode(item)) {
- tryItems.push(item.items[second - 1]);
- } else if (isMatrix(obj)) {
- tryItems.push(item[second - 1]);
- } else {
- break;
- }
- }
- if (tryItems.length === fromItems.length) {
- if (isArrayNode(obj)) {
- obj = new ArrayNode(tryItems);
- } else {
- // matrix
- obj = matrix(tryItems);
- }
- remainingDims.splice(1, 1);
- } else {
- // extracting slice along 2nd dimension failed, give up
- break;
- }
- } else {
- // neither 1st or 2nd dimension is constant, give up
- break;
- }
- }
- if (remainingDims.length === index.dimensions.length) {
- /* No successful constant indexing */
- return new AccessorNode(_ensureNode(obj), index);
- }
- if (remainingDims.length > 0) {
- /* Indexed some but not all dimensions */
- index = new IndexNode(remainingDims);
- return new AccessorNode(_ensureNode(obj), index);
- }
- /* All dimensions were constant, access completely resolved */
- return obj;
- }
- if (isObjectNode(obj) && index.dimensions.length === 1 && isConstantNode(index.dimensions[0])) {
- var key = index.dimensions[0].value;
- if (key in obj.properties) {
- return obj.properties[key];
- }
- return new ConstantNode(); // undefined
- }
- /* Don't know how to index this sort of obj, at least not with this index */
- return new AccessorNode(_ensureNode(obj), index);
- }
- /*
- * Create a binary tree from a list of Fractions and Nodes.
- * Tries to fold Fractions by evaluating them until the first Node in the list is hit, so
- * `args` should be sorted to have the Fractions at the start (if the operator is commutative).
- * @param args - list of Fractions and Nodes
- * @param fn - evaluator for the binary operation evaluator that accepts two Fractions
- * @param makeNode - creates a binary OperatorNode/FunctionNode from a list of child Nodes
- * if args.length is 1, returns args[0]
- * @return - Either a Node representing a binary expression or Fraction
- */
- function foldOp(fn, args, makeNode, options) {
- var first = args.shift();
- // In the following reduction, sofar always has one of the three following
- // forms: [NODE], [CONSTANT], or [NODE, CONSTANT]
- var reduction = args.reduce((sofar, next) => {
- if (!isNode(next)) {
- var last = sofar.pop();
- if (isNode(last)) {
- return [last, next];
- }
- // Two constants in a row, try to fold them into one
- try {
- sofar.push(_eval(fn, [last, next], options));
- return sofar;
- } catch (ignoreandcontinue) {
- sofar.push(last);
- // fall through to Node case
- }
- }
- // Encountered a Node, or failed folding --
- // collapse everything so far into a single tree:
- sofar.push(_ensureNode(sofar.pop()));
- var newtree = sofar.length === 1 ? sofar[0] : makeNode(sofar);
- return [makeNode([newtree, _ensureNode(next)])];
- }, [first]);
- if (reduction.length === 1) {
- return reduction[0];
- }
- // Might end up with a tree and a constant at the end:
- return makeNode([reduction[0], _toNode(reduction[1])]);
- }
- // destroys the original node and returns a folded one
- function foldFraction(node, options) {
- switch (node.type) {
- case 'SymbolNode':
- return node;
- case 'ConstantNode':
- switch (typeof node.value) {
- case 'number':
- return _toNumber(node.value, options);
- case 'string':
- return node.value;
- default:
- if (!isNaN(node.value)) return _toNumber(node.value, options);
- }
- return node;
- case 'FunctionNode':
- if (mathWithTransform[node.name] && mathWithTransform[node.name].rawArgs) {
- return node;
- }
- {
- // Process operators as OperatorNode
- var operatorFunctions = ['add', 'multiply'];
- if (operatorFunctions.indexOf(node.name) === -1) {
- var args = node.args.map(arg => foldFraction(arg, options));
- // If all args are numbers
- if (!args.some(isNode)) {
- try {
- return _eval(node.name, args, options);
- } catch (ignoreandcontinue) {}
- }
- // Size of a matrix does not depend on entries
- if (node.name === 'size' && args.length === 1 && isArrayNode(args[0])) {
- var sz = [];
- var section = args[0];
- while (isArrayNode(section)) {
- sz.push(section.items.length);
- section = section.items[0];
- }
- return matrix(sz);
- }
- // Convert all args to nodes and construct a symbolic function call
- return new FunctionNode(node.name, args.map(_ensureNode));
- } else {
- // treat as operator
- }
- }
- /* falls through */
- case 'OperatorNode':
- {
- var fn = node.fn.toString();
- var _args;
- var res;
- var makeNode = createMakeNodeFunction(node);
- if (isOperatorNode(node) && node.isUnary()) {
- _args = [foldFraction(node.args[0], options)];
- if (!isNode(_args[0])) {
- res = _eval(fn, _args, options);
- } else {
- res = makeNode(_args);
- }
- } else if (isAssociative(node, options.context)) {
- _args = allChildren(node, options.context);
- _args = _args.map(arg => foldFraction(arg, options));
- if (isCommutative(fn, options.context)) {
- // commutative binary operator
- var consts = [];
- var vars = [];
- for (var i = 0; i < _args.length; i++) {
- if (!isNode(_args[i])) {
- consts.push(_args[i]);
- } else {
- vars.push(_args[i]);
- }
- }
- if (consts.length > 1) {
- res = foldOp(fn, consts, makeNode, options);
- vars.unshift(res);
- res = foldOp(fn, vars, makeNode, options);
- } else {
- // we won't change the children order since it's not neccessary
- res = foldOp(fn, _args, makeNode, options);
- }
- } else {
- // non-commutative binary operator
- res = foldOp(fn, _args, makeNode, options);
- }
- } else {
- // non-associative binary operator
- _args = node.args.map(arg => foldFraction(arg, options));
- res = foldOp(fn, _args, makeNode, options);
- }
- return res;
- }
- case 'ParenthesisNode':
- // remove the uneccessary parenthesis
- return foldFraction(node.content, options);
- case 'AccessorNode':
- return _foldAccessor(foldFraction(node.object, options), foldFraction(node.index, options), options);
- case 'ArrayNode':
- {
- var foldItems = node.items.map(item => foldFraction(item, options));
- if (foldItems.some(isNode)) {
- return new ArrayNode(foldItems.map(_ensureNode));
- }
- /* All literals -- return a Matrix so we can operate on it */
- return matrix(foldItems);
- }
- case 'IndexNode':
- {
- return new IndexNode(node.dimensions.map(n => simplifyConstant(n, options)));
- }
- case 'ObjectNode':
- {
- var foldProps = {};
- for (var prop in node.properties) {
- foldProps[prop] = simplifyConstant(node.properties[prop], options);
- }
- return new ObjectNode(foldProps);
- }
- case 'AssignmentNode':
- /* falls through */
- case 'BlockNode':
- /* falls through */
- case 'FunctionAssignmentNode':
- /* falls through */
- case 'RangeNode':
- /* falls through */
- case 'ConditionalNode':
- /* falls through */
- default:
- throw new Error("Unimplemented node type in simplifyConstant: ".concat(node.type));
- }
- }
- return simplifyConstant;
- });
|