123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186 |
- import { factory } from '../../../utils/factory.js';
- import { createSolveValidation } from './utils/solveValidation.js';
- var name = 'lsolveAll';
- var dependencies = ['typed', 'matrix', 'divideScalar', 'multiplyScalar', 'subtract', 'equalScalar', 'DenseMatrix'];
- export var createLsolveAll = /* #__PURE__ */factory(name, dependencies, _ref => {
- var {
- typed,
- matrix,
- divideScalar,
- multiplyScalar,
- subtract,
- equalScalar,
- DenseMatrix
- } = _ref;
- var solveValidation = createSolveValidation({
- DenseMatrix
- });
- /**
- * Finds all solutions of a linear equation system by forwards substitution. Matrix must be a lower triangular matrix.
- *
- * `L * x = b`
- *
- * Syntax:
- *
- * math.lsolveAll(L, b)
- *
- * Examples:
- *
- * const a = [[-2, 3], [2, 1]]
- * const b = [11, 9]
- * const x = lsolveAll(a, b) // [ [[-5.5], [20]] ]
- *
- * See also:
- *
- * lsolve, lup, slu, usolve, lusolve
- *
- * @param {Matrix, Array} L A N x N matrix or array (L)
- * @param {Matrix, Array} b A column vector with the b values
- *
- * @return {DenseMatrix[] | Array[]} An array of affine-independent column vectors (x) that solve the linear system
- */
- return typed(name, {
- 'SparseMatrix, Array | Matrix': function SparseMatrixArrayMatrix(m, b) {
- return _sparseForwardSubstitution(m, b);
- },
- 'DenseMatrix, Array | Matrix': function DenseMatrixArrayMatrix(m, b) {
- return _denseForwardSubstitution(m, b);
- },
- 'Array, Array | Matrix': function ArrayArrayMatrix(a, b) {
- var m = matrix(a);
- var R = _denseForwardSubstitution(m, b);
- return R.map(r => r.valueOf());
- }
- });
- function _denseForwardSubstitution(m, b_) {
- // the algorithm is derived from
- // https://www.overleaf.com/read/csvgqdxggyjv
- // array of right-hand sides
- var B = [solveValidation(m, b_, true)._data.map(e => e[0])];
- var M = m._data;
- var rows = m._size[0];
- var columns = m._size[1];
- // loop columns
- for (var i = 0; i < columns; i++) {
- var L = B.length;
- // loop right-hand sides
- for (var k = 0; k < L; k++) {
- var b = B[k];
- if (!equalScalar(M[i][i], 0)) {
- // non-singular row
- b[i] = divideScalar(b[i], M[i][i]);
- for (var j = i + 1; j < columns; j++) {
- // b[j] -= b[i] * M[j,i]
- b[j] = subtract(b[j], multiplyScalar(b[i], M[j][i]));
- }
- } else if (!equalScalar(b[i], 0)) {
- // singular row, nonzero RHS
- if (k === 0) {
- // There is no valid solution
- return [];
- } else {
- // This RHS is invalid but other solutions may still exist
- B.splice(k, 1);
- k -= 1;
- L -= 1;
- }
- } else if (k === 0) {
- // singular row, RHS is zero
- var bNew = [...b];
- bNew[i] = 1;
- for (var _j = i + 1; _j < columns; _j++) {
- bNew[_j] = subtract(bNew[_j], M[_j][i]);
- }
- B.push(bNew);
- }
- }
- }
- return B.map(x => new DenseMatrix({
- data: x.map(e => [e]),
- size: [rows, 1]
- }));
- }
- function _sparseForwardSubstitution(m, b_) {
- // array of right-hand sides
- var B = [solveValidation(m, b_, true)._data.map(e => e[0])];
- var rows = m._size[0];
- var columns = m._size[1];
- var values = m._values;
- var index = m._index;
- var ptr = m._ptr;
- // loop columns
- for (var i = 0; i < columns; i++) {
- var L = B.length;
- // loop right-hand sides
- for (var k = 0; k < L; k++) {
- var b = B[k];
- // values & indices (column i)
- var iValues = [];
- var iIndices = [];
- // first & last indeces in column
- var firstIndex = ptr[i];
- var lastIndex = ptr[i + 1];
- // find the value at [i, i]
- var Mii = 0;
- for (var j = firstIndex; j < lastIndex; j++) {
- var J = index[j];
- // check row
- if (J === i) {
- Mii = values[j];
- } else if (J > i) {
- // store lower triangular
- iValues.push(values[j]);
- iIndices.push(J);
- }
- }
- if (!equalScalar(Mii, 0)) {
- // non-singular row
- b[i] = divideScalar(b[i], Mii);
- for (var _j2 = 0, _lastIndex = iIndices.length; _j2 < _lastIndex; _j2++) {
- var _J = iIndices[_j2];
- b[_J] = subtract(b[_J], multiplyScalar(b[i], iValues[_j2]));
- }
- } else if (!equalScalar(b[i], 0)) {
- // singular row, nonzero RHS
- if (k === 0) {
- // There is no valid solution
- return [];
- } else {
- // This RHS is invalid but other solutions may still exist
- B.splice(k, 1);
- k -= 1;
- L -= 1;
- }
- } else if (k === 0) {
- // singular row, RHS is zero
- var bNew = [...b];
- bNew[i] = 1;
- for (var _j3 = 0, _lastIndex2 = iIndices.length; _j3 < _lastIndex2; _j3++) {
- var _J2 = iIndices[_j3];
- bNew[_J2] = subtract(bNew[_J2], iValues[_j3]);
- }
- B.push(bNew);
- }
- }
- }
- return B.map(x => new DenseMatrix({
- data: x.map(e => [e]),
- size: [rows, 1]
- }));
- }
- });
|