123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156 |
- import { factory } from '../../../utils/factory.js';
- import { csEreach } from './csEreach.js';
- import { createCsSymperm } from './csSymperm.js';
- var name = 'csChol';
- var dependencies = ['divideScalar', 'sqrt', 'subtract', 'multiply', 'im', 're', 'conj', 'equal', 'smallerEq', 'SparseMatrix'];
- export var createCsChol = /* #__PURE__ */factory(name, dependencies, _ref => {
- var {
- divideScalar,
- sqrt,
- subtract,
- multiply,
- im,
- re,
- conj,
- equal,
- smallerEq,
- SparseMatrix
- } = _ref;
- var csSymperm = createCsSymperm({
- conj,
- SparseMatrix
- });
- /**
- * Computes the Cholesky factorization of matrix A. It computes L and P so
- * L * L' = P * A * P'
- *
- * @param {Matrix} m The A Matrix to factorize, only upper triangular part used
- * @param {Object} s The symbolic analysis from cs_schol()
- *
- * @return {Number} The numeric Cholesky factorization of A or null
- *
- * Reference: http://faculty.cse.tamu.edu/davis/publications.html
- */
- return function csChol(m, s) {
- // validate input
- if (!m) {
- return null;
- }
- // m arrays
- var size = m._size;
- // columns
- var n = size[1];
- // symbolic analysis result
- var parent = s.parent;
- var cp = s.cp;
- var pinv = s.pinv;
- // L arrays
- var lvalues = [];
- var lindex = [];
- var lptr = [];
- // L
- var L = new SparseMatrix({
- values: lvalues,
- index: lindex,
- ptr: lptr,
- size: [n, n]
- });
- // vars
- var c = []; // (2 * n)
- var x = []; // (n)
- // compute C = P * A * P'
- var cm = pinv ? csSymperm(m, pinv, 1) : m;
- // C matrix arrays
- var cvalues = cm._values;
- var cindex = cm._index;
- var cptr = cm._ptr;
- // vars
- var k, p;
- // initialize variables
- for (k = 0; k < n; k++) {
- lptr[k] = c[k] = cp[k];
- }
- // compute L(k,:) for L*L' = C
- for (k = 0; k < n; k++) {
- // nonzero pattern of L(k,:)
- var top = csEreach(cm, k, parent, c);
- // x (0:k) is now zero
- x[k] = 0;
- // x = full(triu(C(:,k)))
- for (p = cptr[k]; p < cptr[k + 1]; p++) {
- if (cindex[p] <= k) {
- x[cindex[p]] = cvalues[p];
- }
- }
- // d = C(k,k)
- var d = x[k];
- // clear x for k+1st iteration
- x[k] = 0;
- // solve L(0:k-1,0:k-1) * x = C(:,k)
- for (; top < n; top++) {
- // s[top..n-1] is pattern of L(k,:)
- var i = s[top];
- // L(k,i) = x (i) / L(i,i)
- var lki = divideScalar(x[i], lvalues[lptr[i]]);
- // clear x for k+1st iteration
- x[i] = 0;
- for (p = lptr[i] + 1; p < c[i]; p++) {
- // row
- var r = lindex[p];
- // update x[r]
- x[r] = subtract(x[r], multiply(lvalues[p], lki));
- }
- // d = d - L(k,i)*L(k,i)
- d = subtract(d, multiply(lki, conj(lki)));
- p = c[i]++;
- // store L(k,i) in column i
- lindex[p] = k;
- lvalues[p] = conj(lki);
- }
- // compute L(k,k)
- if (smallerEq(re(d), 0) || !equal(im(d), 0)) {
- // not pos def
- return null;
- }
- p = c[k]++;
- // store L(k,k) = sqrt(d) in column k
- lindex[p] = k;
- lvalues[p] = sqrt(d);
- }
- // finalize L
- lptr[n] = cp[n];
- // P matrix
- var P;
- // check we need to calculate P
- if (pinv) {
- // P arrays
- var pvalues = [];
- var pindex = [];
- var pptr = [];
- // create P matrix
- for (p = 0; p < n; p++) {
- // initialize ptr (one value per column)
- pptr[p] = p;
- // index (apply permutation vector)
- pindex.push(pinv[p]);
- // value 1
- pvalues.push(1);
- }
- // update ptr
- pptr[n] = n;
- // P
- P = new SparseMatrix({
- values: pvalues,
- index: pindex,
- ptr: pptr,
- size: [n, n]
- });
- }
- // return L & P
- return {
- L,
- P
- };
- };
- });
|