123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475 |
- import { csMarked } from './csMarked.js';
- import { csMark } from './csMark.js';
- import { csUnflip } from './csUnflip.js';
- /**
- * Depth-first search computes the nonzero pattern xi of the directed graph G (Matrix) starting
- * at nodes in B (see csReach()).
- *
- * @param {Number} j The starting node for the DFS algorithm
- * @param {Matrix} g The G matrix to search, ptr array modified, then restored
- * @param {Number} top Start index in stack xi[top..n-1]
- * @param {Number} k The kth column in B
- * @param {Array} xi The nonzero pattern xi[top] .. xi[n - 1], an array of size = 2 * n
- * The first n entries is the nonzero pattern, the last n entries is the stack
- * @param {Array} pinv The inverse row permutation vector, must be null for L * x = b
- *
- * @return {Number} New value of top
- *
- * Reference: http://faculty.cse.tamu.edu/davis/publications.html
- */
- export function csDfs(j, g, top, xi, pinv) {
- // g arrays
- var index = g._index;
- var ptr = g._ptr;
- var size = g._size;
- // columns
- var n = size[1];
- // vars
- var i, p, p2;
- // initialize head
- var head = 0;
- // initialize the recursion stack
- xi[0] = j;
- // loop
- while (head >= 0) {
- // get j from the top of the recursion stack
- j = xi[head];
- // apply permutation vector
- var jnew = pinv ? pinv[j] : j;
- // check node j is marked
- if (!csMarked(ptr, j)) {
- // mark node j as visited
- csMark(ptr, j);
- // update stack (last n entries in xi)
- xi[n + head] = jnew < 0 ? 0 : csUnflip(ptr[jnew]);
- }
- // node j done if no unvisited neighbors
- var done = 1;
- // examine all neighbors of j, stack (last n entries in xi)
- for (p = xi[n + head], p2 = jnew < 0 ? 0 : csUnflip(ptr[jnew + 1]); p < p2; p++) {
- // consider neighbor node i
- i = index[p];
- // check we have visited node i, skip it
- if (csMarked(ptr, i)) {
- continue;
- }
- // pause depth-first search of node j, update stack (last n entries in xi)
- xi[n + head] = p;
- // start dfs at node i
- xi[++head] = i;
- // node j is not done
- done = 0;
- // break, to start dfs(i)
- break;
- }
- // check depth-first search at node j is done
- if (done) {
- // remove j from the recursion stack
- head--;
- // and place in the output stack
- xi[--top] = j;
- }
- }
- return top;
- }
|