123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869 |
- /**
- * Computes the elimination tree of Matrix A (using triu(A)) or the
- * elimination tree of A'A without forming A'A.
- *
- * @param {Matrix} a The A Matrix
- * @param {boolean} ata A value of true the function computes the etree of A'A
- *
- * Reference: http://faculty.cse.tamu.edu/davis/publications.html
- */
- export function csEtree(a, ata) {
- // check inputs
- if (!a) {
- return null;
- }
- // a arrays
- var aindex = a._index;
- var aptr = a._ptr;
- var asize = a._size;
- // rows & columns
- var m = asize[0];
- var n = asize[1];
- // allocate result
- var parent = []; // (n)
- // allocate workspace
- var w = []; // (n + (ata ? m : 0))
- var ancestor = 0; // first n entries in w
- var prev = n; // last m entries (ata = true)
- var i, inext;
- // check we are calculating A'A
- if (ata) {
- // initialize workspace
- for (i = 0; i < m; i++) {
- w[prev + i] = -1;
- }
- }
- // loop columns
- for (var k = 0; k < n; k++) {
- // node k has no parent yet
- parent[k] = -1;
- // nor does k have an ancestor
- w[ancestor + k] = -1;
- // values in column k
- for (var p0 = aptr[k], p1 = aptr[k + 1], p = p0; p < p1; p++) {
- // row
- var r = aindex[p];
- // node
- i = ata ? w[prev + r] : r;
- // traverse from i to k
- for (; i !== -1 && i < k; i = inext) {
- // inext = ancestor of i
- inext = w[ancestor + i];
- // path compression
- w[ancestor + i] = k;
- // check no anc., parent is k
- if (inext === -1) {
- parent[i] = k;
- }
- }
- if (ata) {
- w[prev + r] = k;
- }
- }
- }
- return parent;
- }
|