csReach.js 1.6 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950
  1. import { csMarked } from './csMarked.js';
  2. import { csMark } from './csMark.js';
  3. import { csDfs } from './csDfs.js';
  4. /**
  5. * The csReach function computes X = Reach(B), where B is the nonzero pattern of the n-by-1
  6. * sparse column of vector b. The function returns the set of nodes reachable from any node in B. The
  7. * nonzero pattern xi of the solution x to the sparse linear system Lx=b is given by X=Reach(B).
  8. *
  9. * @param {Matrix} g The G matrix
  10. * @param {Matrix} b The B matrix
  11. * @param {Number} k The kth column in B
  12. * @param {Array} xi The nonzero pattern xi[top] .. xi[n - 1], an array of size = 2 * n
  13. * The first n entries is the nonzero pattern, the last n entries is the stack
  14. * @param {Array} pinv The inverse row permutation vector
  15. *
  16. * @return {Number} The index for the nonzero pattern
  17. *
  18. * Reference: http://faculty.cse.tamu.edu/davis/publications.html
  19. */
  20. export function csReach(g, b, k, xi, pinv) {
  21. // g arrays
  22. var gptr = g._ptr;
  23. var gsize = g._size;
  24. // b arrays
  25. var bindex = b._index;
  26. var bptr = b._ptr;
  27. // columns
  28. var n = gsize[1];
  29. // vars
  30. var p, p0, p1;
  31. // initialize top
  32. var top = n;
  33. // loop column indeces in B
  34. for (p0 = bptr[k], p1 = bptr[k + 1], p = p0; p < p1; p++) {
  35. // node i
  36. var i = bindex[p];
  37. // check node i is marked
  38. if (!csMarked(gptr, i)) {
  39. // start a dfs at unmarked node i
  40. top = csDfs(i, g, top, xi, pinv);
  41. }
  42. }
  43. // loop columns from top -> n - 1
  44. for (p = top; p < n; p++) {
  45. // restore G
  46. csMark(gptr, xi[p]);
  47. }
  48. return top;
  49. }