csSpsolve.js 2.8 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283
  1. import { csReach } from './csReach.js';
  2. import { factory } from '../../../utils/factory.js';
  3. var name = 'csSpsolve';
  4. var dependencies = ['divideScalar', 'multiply', 'subtract'];
  5. export var createCsSpsolve = /* #__PURE__ */factory(name, dependencies, _ref => {
  6. var {
  7. divideScalar,
  8. multiply,
  9. subtract
  10. } = _ref;
  11. /**
  12. * The function csSpsolve() computes the solution to G * x = bk, where bk is the
  13. * kth column of B. When lo is true, the function assumes G = L is lower triangular with the
  14. * diagonal entry as the first entry in each column. When lo is true, the function assumes G = U
  15. * is upper triangular with the diagonal entry as the last entry in each column.
  16. *
  17. * @param {Matrix} g The G matrix
  18. * @param {Matrix} b The B matrix
  19. * @param {Number} k The kth column in B
  20. * @param {Array} xi The nonzero pattern xi[top] .. xi[n - 1], an array of size = 2 * n
  21. * The first n entries is the nonzero pattern, the last n entries is the stack
  22. * @param {Array} x The soluton to the linear system G * x = b
  23. * @param {Array} pinv The inverse row permutation vector, must be null for L * x = b
  24. * @param {boolean} lo The lower (true) upper triangular (false) flag
  25. *
  26. * @return {Number} The index for the nonzero pattern
  27. *
  28. * Reference: http://faculty.cse.tamu.edu/davis/publications.html
  29. */
  30. return function csSpsolve(g, b, k, xi, x, pinv, lo) {
  31. // g arrays
  32. var gvalues = g._values;
  33. var gindex = g._index;
  34. var gptr = g._ptr;
  35. var gsize = g._size;
  36. // columns
  37. var n = gsize[1];
  38. // b arrays
  39. var bvalues = b._values;
  40. var bindex = b._index;
  41. var bptr = b._ptr;
  42. // vars
  43. var p, p0, p1, q;
  44. // xi[top..n-1] = csReach(B(:,k))
  45. var top = csReach(g, b, k, xi, pinv);
  46. // clear x
  47. for (p = top; p < n; p++) {
  48. x[xi[p]] = 0;
  49. }
  50. // scatter b
  51. for (p0 = bptr[k], p1 = bptr[k + 1], p = p0; p < p1; p++) {
  52. x[bindex[p]] = bvalues[p];
  53. }
  54. // loop columns
  55. for (var px = top; px < n; px++) {
  56. // x array index for px
  57. var j = xi[px];
  58. // apply permutation vector (U x = b), j maps to column J of G
  59. var J = pinv ? pinv[j] : j;
  60. // check column J is empty
  61. if (J < 0) {
  62. continue;
  63. }
  64. // column value indeces in G, p0 <= p < p1
  65. p0 = gptr[J];
  66. p1 = gptr[J + 1];
  67. // x(j) /= G(j,j)
  68. x[j] = divideScalar(x[j], gvalues[lo ? p0 : p1 - 1]);
  69. // first entry L(j,j)
  70. p = lo ? p0 + 1 : p0;
  71. q = lo ? p1 : p1 - 1;
  72. // loop
  73. for (; p < q; p++) {
  74. // row
  75. var i = gindex[p];
  76. // x(i) -= G(i,j) * x(j)
  77. x[i] = subtract(x[i], multiply(gvalues[p], x[j]));
  78. }
  79. }
  80. // return top of stack
  81. return top;
  82. };
  83. });