1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283 |
- import { csReach } from './csReach.js';
- import { factory } from '../../../utils/factory.js';
- var name = 'csSpsolve';
- var dependencies = ['divideScalar', 'multiply', 'subtract'];
- export var createCsSpsolve = /* #__PURE__ */factory(name, dependencies, _ref => {
- var {
- divideScalar,
- multiply,
- subtract
- } = _ref;
- /**
- * The function csSpsolve() computes the solution to G * x = bk, where bk is the
- * kth column of B. When lo is true, the function assumes G = L is lower triangular with the
- * diagonal entry as the first entry in each column. When lo is true, the function assumes G = U
- * is upper triangular with the diagonal entry as the last entry in each column.
- *
- * @param {Matrix} g The G matrix
- * @param {Matrix} b The B matrix
- * @param {Number} k The kth column in B
- * @param {Array} xi The nonzero pattern xi[top] .. xi[n - 1], an array of size = 2 * n
- * The first n entries is the nonzero pattern, the last n entries is the stack
- * @param {Array} x The soluton to the linear system G * x = b
- * @param {Array} pinv The inverse row permutation vector, must be null for L * x = b
- * @param {boolean} lo The lower (true) upper triangular (false) flag
- *
- * @return {Number} The index for the nonzero pattern
- *
- * Reference: http://faculty.cse.tamu.edu/davis/publications.html
- */
- return function csSpsolve(g, b, k, xi, x, pinv, lo) {
- // g arrays
- var gvalues = g._values;
- var gindex = g._index;
- var gptr = g._ptr;
- var gsize = g._size;
- // columns
- var n = gsize[1];
- // b arrays
- var bvalues = b._values;
- var bindex = b._index;
- var bptr = b._ptr;
- // vars
- var p, p0, p1, q;
- // xi[top..n-1] = csReach(B(:,k))
- var top = csReach(g, b, k, xi, pinv);
- // clear x
- for (p = top; p < n; p++) {
- x[xi[p]] = 0;
- }
- // scatter b
- for (p0 = bptr[k], p1 = bptr[k + 1], p = p0; p < p1; p++) {
- x[bindex[p]] = bvalues[p];
- }
- // loop columns
- for (var px = top; px < n; px++) {
- // x array index for px
- var j = xi[px];
- // apply permutation vector (U x = b), j maps to column J of G
- var J = pinv ? pinv[j] : j;
- // check column J is empty
- if (J < 0) {
- continue;
- }
- // column value indeces in G, p0 <= p < p1
- p0 = gptr[J];
- p1 = gptr[J + 1];
- // x(j) /= G(j,j)
- x[j] = divideScalar(x[j], gvalues[lo ? p0 : p1 - 1]);
- // first entry L(j,j)
- p = lo ? p0 + 1 : p0;
- q = lo ? p1 : p1 - 1;
- // loop
- for (; p < q; p++) {
- // row
- var i = gindex[p];
- // x(i) -= G(i,j) * x(j)
- x[i] = subtract(x[i], multiply(gvalues[p], x[j]));
- }
- }
- // return top of stack
- return top;
- };
- });
|