123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120 |
- import { factory } from '../../utils/factory.js';
- import { gammaG, gammaNumber, gammaP } from '../../plain/number/index.js';
- var name = 'gamma';
- var dependencies = ['typed', 'config', 'multiplyScalar', 'pow', 'BigNumber', 'Complex'];
- export var createGamma = /* #__PURE__ */factory(name, dependencies, _ref => {
- var {
- typed,
- config,
- multiplyScalar,
- pow,
- BigNumber: _BigNumber,
- Complex
- } = _ref;
- /**
- * Compute the gamma function of a value using Lanczos approximation for
- * small values, and an extended Stirling approximation for large values.
- *
- * To avoid confusion with the matrix Gamma function, this function does
- * not apply to matrices.
- *
- * Syntax:
- *
- * math.gamma(n)
- *
- * Examples:
- *
- * math.gamma(5) // returns 24
- * math.gamma(-0.5) // returns -3.5449077018110335
- * math.gamma(math.i) // returns -0.15494982830180973 - 0.49801566811835596i
- *
- * See also:
- *
- * combinations, factorial, permutations
- *
- * @param {number | BigNumber | Complex} n A real or complex number
- * @return {number | BigNumber | Complex} The gamma of `n`
- */
- function gammaComplex(n) {
- if (n.im === 0) {
- return gammaNumber(n.re);
- }
- // Lanczos approximation doesn't work well with real part lower than 0.5
- // So reflection formula is required
- if (n.re < 0.5) {
- // Euler's reflection formula
- // gamma(1-z) * gamma(z) = PI / sin(PI * z)
- // real part of Z should not be integer [sin(PI) == 0 -> 1/0 - undefined]
- // thanks to imperfect sin implementation sin(PI * n) != 0
- // we can safely use it anyway
- var _t = new Complex(1 - n.re, -n.im);
- var r = new Complex(Math.PI * n.re, Math.PI * n.im);
- return new Complex(Math.PI).div(r.sin()).div(gammaComplex(_t));
- }
- // Lanczos approximation
- // z -= 1
- n = new Complex(n.re - 1, n.im);
- // x = gammaPval[0]
- var x = new Complex(gammaP[0], 0);
- // for (i, gammaPval) in enumerate(gammaP):
- for (var i = 1; i < gammaP.length; ++i) {
- // x += gammaPval / (z + i)
- var gammaPval = new Complex(gammaP[i], 0);
- x = x.add(gammaPval.div(n.add(i)));
- }
- // t = z + gammaG + 0.5
- var t = new Complex(n.re + gammaG + 0.5, n.im);
- // y = sqrt(2 * pi) * t ** (z + 0.5) * exp(-t) * x
- var twoPiSqrt = Math.sqrt(2 * Math.PI);
- var tpow = t.pow(n.add(0.5));
- var expt = t.neg().exp();
- // y = [x] * [sqrt(2 * pi)] * [t ** (z + 0.5)] * [exp(-t)]
- return x.mul(twoPiSqrt).mul(tpow).mul(expt);
- }
- return typed(name, {
- number: gammaNumber,
- Complex: gammaComplex,
- BigNumber: function BigNumber(n) {
- if (n.isInteger()) {
- return n.isNegative() || n.isZero() ? new _BigNumber(Infinity) : bigFactorial(n.minus(1));
- }
- if (!n.isFinite()) {
- return new _BigNumber(n.isNegative() ? NaN : Infinity);
- }
- throw new Error('Integer BigNumber expected');
- }
- });
- /**
- * Calculate factorial for a BigNumber
- * @param {BigNumber} n
- * @returns {BigNumber} Returns the factorial of n
- */
- function bigFactorial(n) {
- if (n < 8) {
- return new _BigNumber([1, 1, 2, 6, 24, 120, 720, 5040][n]);
- }
- var precision = config.precision + (Math.log(n.toNumber()) | 0);
- var Big = _BigNumber.clone({
- precision
- });
- if (n % 2 === 1) {
- return n.times(bigFactorial(new _BigNumber(n - 1)));
- }
- var p = n;
- var prod = new Big(n);
- var sum = n.toNumber();
- while (p > 2) {
- p -= 2;
- sum += p;
- prod = prod.times(sum);
- }
- return new _BigNumber(prod.toPrecision(_BigNumber.precision));
- }
- });
|