csChol.js 4.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161
  1. "use strict";
  2. Object.defineProperty(exports, "__esModule", {
  3. value: true
  4. });
  5. exports.createCsChol = void 0;
  6. var _factory = require("../../../utils/factory.js");
  7. var _csEreach = require("./csEreach.js");
  8. var _csSymperm = require("./csSymperm.js");
  9. var name = 'csChol';
  10. var dependencies = ['divideScalar', 'sqrt', 'subtract', 'multiply', 'im', 're', 'conj', 'equal', 'smallerEq', 'SparseMatrix'];
  11. var createCsChol = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) {
  12. var divideScalar = _ref.divideScalar,
  13. sqrt = _ref.sqrt,
  14. subtract = _ref.subtract,
  15. multiply = _ref.multiply,
  16. im = _ref.im,
  17. re = _ref.re,
  18. conj = _ref.conj,
  19. equal = _ref.equal,
  20. smallerEq = _ref.smallerEq,
  21. SparseMatrix = _ref.SparseMatrix;
  22. var csSymperm = (0, _csSymperm.createCsSymperm)({
  23. conj: conj,
  24. SparseMatrix: SparseMatrix
  25. });
  26. /**
  27. * Computes the Cholesky factorization of matrix A. It computes L and P so
  28. * L * L' = P * A * P'
  29. *
  30. * @param {Matrix} m The A Matrix to factorize, only upper triangular part used
  31. * @param {Object} s The symbolic analysis from cs_schol()
  32. *
  33. * @return {Number} The numeric Cholesky factorization of A or null
  34. *
  35. * Reference: http://faculty.cse.tamu.edu/davis/publications.html
  36. */
  37. return function csChol(m, s) {
  38. // validate input
  39. if (!m) {
  40. return null;
  41. }
  42. // m arrays
  43. var size = m._size;
  44. // columns
  45. var n = size[1];
  46. // symbolic analysis result
  47. var parent = s.parent;
  48. var cp = s.cp;
  49. var pinv = s.pinv;
  50. // L arrays
  51. var lvalues = [];
  52. var lindex = [];
  53. var lptr = [];
  54. // L
  55. var L = new SparseMatrix({
  56. values: lvalues,
  57. index: lindex,
  58. ptr: lptr,
  59. size: [n, n]
  60. });
  61. // vars
  62. var c = []; // (2 * n)
  63. var x = []; // (n)
  64. // compute C = P * A * P'
  65. var cm = pinv ? csSymperm(m, pinv, 1) : m;
  66. // C matrix arrays
  67. var cvalues = cm._values;
  68. var cindex = cm._index;
  69. var cptr = cm._ptr;
  70. // vars
  71. var k, p;
  72. // initialize variables
  73. for (k = 0; k < n; k++) {
  74. lptr[k] = c[k] = cp[k];
  75. }
  76. // compute L(k,:) for L*L' = C
  77. for (k = 0; k < n; k++) {
  78. // nonzero pattern of L(k,:)
  79. var top = (0, _csEreach.csEreach)(cm, k, parent, c);
  80. // x (0:k) is now zero
  81. x[k] = 0;
  82. // x = full(triu(C(:,k)))
  83. for (p = cptr[k]; p < cptr[k + 1]; p++) {
  84. if (cindex[p] <= k) {
  85. x[cindex[p]] = cvalues[p];
  86. }
  87. }
  88. // d = C(k,k)
  89. var d = x[k];
  90. // clear x for k+1st iteration
  91. x[k] = 0;
  92. // solve L(0:k-1,0:k-1) * x = C(:,k)
  93. for (; top < n; top++) {
  94. // s[top..n-1] is pattern of L(k,:)
  95. var i = s[top];
  96. // L(k,i) = x (i) / L(i,i)
  97. var lki = divideScalar(x[i], lvalues[lptr[i]]);
  98. // clear x for k+1st iteration
  99. x[i] = 0;
  100. for (p = lptr[i] + 1; p < c[i]; p++) {
  101. // row
  102. var r = lindex[p];
  103. // update x[r]
  104. x[r] = subtract(x[r], multiply(lvalues[p], lki));
  105. }
  106. // d = d - L(k,i)*L(k,i)
  107. d = subtract(d, multiply(lki, conj(lki)));
  108. p = c[i]++;
  109. // store L(k,i) in column i
  110. lindex[p] = k;
  111. lvalues[p] = conj(lki);
  112. }
  113. // compute L(k,k)
  114. if (smallerEq(re(d), 0) || !equal(im(d), 0)) {
  115. // not pos def
  116. return null;
  117. }
  118. p = c[k]++;
  119. // store L(k,k) = sqrt(d) in column k
  120. lindex[p] = k;
  121. lvalues[p] = sqrt(d);
  122. }
  123. // finalize L
  124. lptr[n] = cp[n];
  125. // P matrix
  126. var P;
  127. // check we need to calculate P
  128. if (pinv) {
  129. // P arrays
  130. var pvalues = [];
  131. var pindex = [];
  132. var pptr = [];
  133. // create P matrix
  134. for (p = 0; p < n; p++) {
  135. // initialize ptr (one value per column)
  136. pptr[p] = p;
  137. // index (apply permutation vector)
  138. pindex.push(pinv[p]);
  139. // value 1
  140. pvalues.push(1);
  141. }
  142. // update ptr
  143. pptr[n] = n;
  144. // P
  145. P = new SparseMatrix({
  146. values: pvalues,
  147. index: pindex,
  148. ptr: pptr,
  149. size: [n, n]
  150. });
  151. }
  152. // return L & P
  153. return {
  154. L: L,
  155. P: P
  156. };
  157. };
  158. });
  159. exports.createCsChol = createCsChol;