123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102 |
- "use strict";
- Object.defineProperty(exports, "__esModule", {
- value: true
- });
- exports.createStd = void 0;
- var _factory = require("../../utils/factory.js");
- var _is = require("../../utils/is.js");
- var name = 'std';
- var dependencies = ['typed', 'map', 'sqrt', 'variance'];
- var createStd = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) {
- var typed = _ref.typed,
- map = _ref.map,
- sqrt = _ref.sqrt,
- variance = _ref.variance;
- /**
- * Compute the standard deviation of a matrix or a list with values.
- * The standard deviations is defined as the square root of the variance:
- * `std(A) = sqrt(variance(A))`.
- * In case of a (multi dimensional) array or matrix, the standard deviation
- * over all elements will be calculated by default, unless an axis is specified
- * in which case the standard deviation will be computed along that axis.
- *
- * Additionally, it is possible to compute the standard deviation along the rows
- * or columns of a matrix by specifying the dimension as the second argument.
- *
- * Optionally, the type of normalization can be specified as the final
- * parameter. The parameter `normalization` can be one of the following values:
- *
- * - 'unbiased' (default) The sum of squared errors is divided by (n - 1)
- * - 'uncorrected' The sum of squared errors is divided by n
- * - 'biased' The sum of squared errors is divided by (n + 1)
- *
- *
- * Syntax:
- *
- * math.std(a, b, c, ...)
- * math.std(A)
- * math.std(A, normalization)
- * math.std(A, dimension)
- * math.std(A, dimension, normalization)
- *
- * Examples:
- *
- * math.std(2, 4, 6) // returns 2
- * math.std([2, 4, 6, 8]) // returns 2.581988897471611
- * math.std([2, 4, 6, 8], 'uncorrected') // returns 2.23606797749979
- * math.std([2, 4, 6, 8], 'biased') // returns 2
- *
- * math.std([[1, 2, 3], [4, 5, 6]]) // returns 1.8708286933869707
- * math.std([[1, 2, 3], [4, 6, 8]], 0) // returns [2.1213203435596424, 2.8284271247461903, 3.5355339059327378]
- * math.std([[1, 2, 3], [4, 6, 8]], 1) // returns [1, 2]
- * math.std([[1, 2, 3], [4, 6, 8]], 1, 'biased') // returns [0.7071067811865476, 1.4142135623730951]
- *
- * See also:
- *
- * mean, median, max, min, prod, sum, variance
- *
- * @param {Array | Matrix} array
- * A single matrix or or multiple scalar values
- * @param {string} [normalization='unbiased']
- * Determines how to normalize the variance.
- * Choose 'unbiased' (default), 'uncorrected', or 'biased'.
- * @param dimension {number | BigNumber}
- * Determines the axis to compute the standard deviation for a matrix
- * @return {*} The standard deviation
- */
- return typed(name, {
- // std([a, b, c, d, ...])
- 'Array | Matrix': _std,
- // std([a, b, c, d, ...], normalization)
- 'Array | Matrix, string': _std,
- // std([a, b, c, c, ...], dim)
- 'Array | Matrix, number | BigNumber': _std,
- // std([a, b, c, c, ...], dim, normalization)
- 'Array | Matrix, number | BigNumber, string': _std,
- // std(a, b, c, d, ...)
- '...': function _(args) {
- return _std(args);
- }
- });
- function _std(array, normalization) {
- if (array.length === 0) {
- throw new SyntaxError('Function std requires one or more parameters (0 provided)');
- }
- try {
- var v = variance.apply(null, arguments);
- if ((0, _is.isCollection)(v)) {
- return map(v, sqrt);
- } else {
- return sqrt(v);
- }
- } catch (err) {
- if (err instanceof TypeError && err.message.indexOf(' variance') !== -1) {
- throw new TypeError(err.message.replace(' variance', ' std'));
- } else {
- throw err;
- }
- }
- }
- });
- exports.createStd = createStd;
|